|
|
@ -693,7 +693,7 @@ Llavors, hem de muiltiplicar per 6. D'aquesta manera, la factorització final é |
|
|
|
\end{enumerate} |
|
|
|
\end{exercise} |
|
|
|
|
|
|
|
\begin{solution*}\begin{enumerate*}[label=\emph{\alph*})] \item $(x - 1) (x + 2) (x - 3)$, \item $(x - 1) (x^2 + 9)$, \item $15 x (x - \frac{1}{3}) (x + 2)$, \item $3x(x-2)(x+1)$, \item $2(x-1)(x^2-2)(x+3)$, \item $-(x-1)(x+2)(x-2)$, \item $-5 (x- \sqrt{2})^2 (x+\sqrt{2})^2$ (resoleu l'equació biquadrada $-5t^2 + 20t -20 =0$), \item $3 (x - 2) x (x - 3) (x + 3)$ \end{enumerate*} \end{solution*} |
|
|
|
\begin{solution*}\begin{enumerate*}[label=\emph{\alph*})] \item $(x - 1) (x + 2) (x - 3)$, \item $2(x - 1) (x + 2) (x - 3)$, \item $(x - 1) (x^2 + 9)$, \item $15 x (x - \frac{1}{3}) (x + 2)$, \item $3x(x-2)(x+1)$, \item $2(x-1)(x-\sqrt{2})(x+\sqrt{2})(x+3)$, \item $-(x-1)(x+2)(x-2)$, \item $-5 (x- \sqrt{2})^2 (x+\sqrt{2})^2$ (resoleu l'equació biquadrada $-5t^2 + 20t -20 =0$), \item $3 (x - 2) x (x - 3) (x + 3)$ \end{enumerate*} \end{solution*} |
|
|
|
|
|
|
|
|
|
|
|
|